If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-35x+15=0
a = 1; b = -35; c = +15;
Δ = b2-4ac
Δ = -352-4·1·15
Δ = 1165
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-\sqrt{1165}}{2*1}=\frac{35-\sqrt{1165}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+\sqrt{1165}}{2*1}=\frac{35+\sqrt{1165}}{2} $
| x-0.11=45 | | 3(2d+1)^2-1=2 | | 2x+2x=4³ | | 4m+3=-16 | | 4(m+3)=−16 | | 11u=9u+12 | | 2(x–9)=-14 | | 4(k-3)^2=100 | | 4(w+5)=-2(8w-7)+8w | | n/5+16=2 | | (3+2)(3x-4)=0 | | 2x–7=3x–2(x+8) | | (ıı)(2x+3)(2x+5)(x−1)(x−2)=30 | | 4(k–3)2=100 | | m÷4=32 | | -4(x+4)=7x+17 | | (2x+3)(2x+5)(x-1)(x-2)=30(ıı)(2x+3)(2x+5)(x−1)(x−2)=30 | | 6x+2x^2=95 | | 0.25x+900=x | | (s+2)^2=1 | | 4/z+3+5/6=23/18 | | 3x/8+x/4=x/2 | | n/5+43=45 | | 3x/8=+x/4+x/2 | | d-25=78d= | | 3x/8+x/4=+x/2 | | b+5=17b= | | 6x÷=7 | | 3·x+1=21+3x/2 | | 3x+1=21+3x/2 | | 20-16=4(5-4p) | | 4(u+5)-7u=26 |